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Abstract 
 
This paper describes new concepts the author has proposed and demonstrated to realize metal and polymer based 
sensitive and/or active structural material systems suitable for smart structures. Most of the developments have been done 
by simple and innovative methods without using sophisticated and expensive sensors and actuators. The following topics 
are mainly examined: (1) forming optical interference and loss type strain sensors in epoxy matrix simply by embedding 
and breaking notched optical fiber in it; (2) forming a multifunctional sensor in aluminum matrix for temperature and 
strain monitorings by embedding an oxidized nickel fiber; (3) fabricating multifunctional composites by using 
conventional structural materials - an active laminate of CFRP/aluminum of which unidirectional actuation is realized by 
electrical resistance heating of carbon fiber in the CFRP layer and its curvature change can be monitored using optical 
fiber multiply fractured in the CFRP layer. 
 
 
Introduction 

 
Smart material systems are attracting worldwide interest because of their potential uses: damage detection, health 
monitoring, noise reduction, vibration suppression, actuation, self repair, and fabrication process monitoring [1]. Most of 
these new material systems have been developed by embedding sensor and/or actuator materials in host structural 
materials such as polymer matrix composites [2]. Active and sensitive material systems will be able to replace or simplify 
complicated mechanical systems as shown in Figure 1. They will remove, for example, heavy and complicated actuation 
systems, hinges and tribological problems. Light-weight, high-strength and active/sensitive structural materials could be 
applied to many active parts for high speed vehicles such as hatches, doors, flaps and air brakes, or could be applied to 
innovative wings and bodies. 
 
Figure 2 shows a major direction of the author's researches, where an active composite material with embedded 
functional fiber is proposed. The reinforcement fiber works as "bone" and the matrix material works as "muscle" for 
actuation which is controlled by stimulation and energy transmitted through the functional fibers regarded as "nerve" and 
"blood vessel." This material system could have a variety of functions [3].  
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Fig. 2   An active composite embedded 
with functional fibers.
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Fig. 4   The test piece of epoxy matrix embedded 
with a notched optical fiber for measuring optical 
transmission and tensile strain.
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Fig. 4   The test piece of epoxy matrix embedded 
with a notched optical fiber for measuring optical 
transmission and tensile strain.
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In this paper, new concepts the author has proposed and demonstrated to realize metal and polymer based sensitive 
and/or active structural material systems suitable for health monitoring, active shape control, and so on, are introduced. 
Most of the developments have been done by simple and innovative methods without using sophisticated and expensive 
sensors and actuators. The following topics are mainly examined: (1) forming optical interference and loss type strain 
sensors in epoxy matrix simply by embedding and breaking notched optical fiber in it; (2) forming a multifunctional 
sensor in aluminum matrix for temperature and strain monitoring by embedding an oxidized nickel fiber in it; (3) 
fabricating multifunctional composites by using conventional structural materials - an active laminate of 
CFRP/aluminum with embedded optical fiber multiply fractured in the CFRP layer. 
 
Sensors in Structural Material 
 
Forming a fiber-optic strain sensor in a matrix material 
The author proposed simple fiber-optic strain sensors which can be formed simply by breaking optical fibers in matrix 
materials at notches made on the fibers before they are embedded as shown in Figure 3 [4]. In the case of a single notch 
(n=1), it will work as an optical interference type sensor suitable for measuring small and precise strain, and in the case 
of multiple notches (n>>1), they will work as an optical loss type sensor suitable for measuring large strain.    
 
For experimental purposes, a quartz-type and single-mode optical fiber was used. An epoxy resin was selected as an 
example of the host materials because it is a common matrix material and because its transparency enables observation of 
the embedded optical fiber. Shape and dimensions of the tensile test specimen are given in Figure 4. A single notch, 5 or 
15 notches, that is n=1, 5 or 15 respectively, were made on an optical fiber filament with an optical fiber cutter. The 
notched fiber as shown in Figure 5 was then embedded in an epoxy resin matrix. The specimen was attached in an 
Instron-type testing machine and the embedded optical fiber was connected to a laser diode light source of 0.67x10-3mm 
wavelength and to a power meter. The specimen was tensile tested while the optical power variation was monitored at the 
constant crosshead speed of 1.7x10-3mm/s.        
 
The results of optical transmission loss L and tensile strain of a specimen embedded with a single-notched optical fiber 
(n=1) as a function of time are given in Figure 6, which indicates that the optical loss starts to fluctuate sinusoidally at the 
strain of about 0.076%, where the embedded optical fiber fractured at the notch. The specimen after the tensile test shows 
a crack almost normal to its optical axis as shown in Figure 7.  
 
In the case of embedding an optical fiber with multiple notches, the specimens having 5 and 15 notches (n=5 and 15) 
were loaded and unloaded for five times under monitoring optical transmission. The results are given in Figure 8. During 
the first loading, the each embedded optical fiber fractured at the every notch. According to the experimental results, the 
fractured optical fibers are working as displacement sensors during the first unloading and the following loading and 
unloading cycles. The response is improved by increasing the number of fractures from 5 to 15.  
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Fig. 6   Optical transmission loss and strain of the
test piece during tensile test as a function of time. 
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the epoxy matrix specimens with notches of (a) n=5 
and (b) n=15 as a function of time.
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Fig. 8   Optical transmission loss and tensile strain of 
the epoxy matrix specimens with notches of (a) n=5 
and (b) n=15 as a function of time.
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Fig. 7   An optical micrograph of the specimen with a 
single notch (n=1) after tensile test showing a crack 
in the embedded optical fiber.
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With the proposed methods, compact, robust and low cost strain sensors are simply formed without the necessity of 
alignment of the fibers’ optical axes, a tube for the alignment and an adhesive for fixing the fibers. 
 
A simple sensor for measuring temperature and strain in aluminum matrix 
Sensors for smart structural materials are not necessarily the best ones. For example, an embedded fiber filament might 
work as a sensor as well as a reinforcement, heater, actuator, and so on. Though carbon fiber is not the best sensor, heater, 
or actuator element, as an example, its versatility can make structural materials smart without an increase of cost, weight, 
and complexity. 
 
Figure 9 illustrates how to create a simple temperature and strain sensor in a metal matrix [5, 6]. A pure nickel wire of 
0.15mm in diameter was selected to form a thermocouple with an aluminum matrix and to form a strain gauge in it. 
Because the wire has to be insulated from the metal matrix, the nickel wire was oxidized at 1073K for 7.2ks in air to 
form a uniform NiO layer that would electrically insulate the wire from the aluminum matrix. The materials prepared as 
shown in Figure 10 were consolidated by hot-pressing at 798K under 16.4MPa for 1.8ks. 
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Nickel wire was uniformly oxidized and embedded in the aluminum matrix without fracture. When the material was 
evaluated as a temperature sensor, a temperature gradient was given on the specimen from heating side to cooling side 
and it was measured with an external thermocouple. Thermal electromotive forces generated between the embedded 
NiO/Ni fiber of length X=18, 30 and 42mm and aluminum matrix were also measured to obtain the temperatures. These 
values were compared with each other at the each position. The material was evaluated as a strain sensor by measuring 
the electrical resistance change of the embedded fiber during tensile test. Aluminum tabs of 0.5mm thick were put on 
both ends of the specimen to adjust the gauge length as 20mm. A tensile test was carried out by an Instron-type tensile 
test machine under the constant crosshead speed of 2x10-3mm/s. The strain of the specimen was measured by using a  
strain gauge. Electrical resistance change of the embedded NiO/Ni fiber was monitored during the tensile testing. 
 
The results of temperature measurements of the specimen are summarized in Figure 11. The curve in this figure indicates 
the temperature gradient. The temperatures of the specimen surface at the positions of the embedded NiO/Ni fiber sensor, 
that is, at x=18, 30 and 42mm are indicated by the arrows. The temperatures resulting from the thermal electromotive 
forces generated between the embedded NiO/Ni fiber and the aluminum matrix at X=18, 30 and 42mm are shown by the 
open circles in the same figure. These values coincide well, which indicates that the embedded NiO/Ni fiber is working 
as a temperature sensor.     
 
The relation between tensile strain in the composite and electrical resistance of the embedded NiO/Ni fiber was obtained 
by tensile testing. The electrical resistance increases linearly with increasing the tensile strain up to around 0.018. So, it is 
clear that the NiO/Ni fiber is working as a strain sensor in the aluminum matrix. The increase of the electrical resistance 
from the strain of 0.018 was caused by the debonding of the NiO/Ni fiber from the aluminum matrix, which could be 
improved by modifying its shape.    
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According to these results, a single NiO/Ni fiber embedded in aluminum works as both a temperature and a strain sensor. 
When it was embedded in a SiC fiber reinforced aluminum composite, it could pick up breakages of the SiC fibers during 
tensile test. So it is useful for monitoring the condition of aluminum-based materials and composites. 
 
Active Composites 
 
Composite materials for structural use, especially fiber reinforced type composite materials, have been basically designed 
to suppress thermal deformation as well as to obtain better mechanical properties. But, as shown in Figure 2, the author 
proposed a new idea to regard it as an active structural material due to its thermal deformation. See Figure 12 for a 
proposed carbon fiber reinforced plastic (CFRP)/metal active laminate. The most simple and useful example of this type 
of material is shown in Figure 13 [7-9]. The mechanism of its actuation is fundamentally the same as that of bimetal, but 
its major advantage is its directional actuation due to directionality of the reinforcement fiber and the anisotropy of its 
coefficient of thermal expansion (CTE).    
 
This material was easily fabricated by laminating a CFRP prepreg on a metal plate with an epoxy adhesive film as an 
insulator and two pieces of coppers foil as electrodes as shown in Figure 14. The lamination of the CFRP prepreg and the 
copper foils was done by hot pressing at 453K, under 0.1MPa and for 7.2ks, and then it was laminated with the 
aluminum plate using the epoxy adhesive film by hot pressing at 448K, under 0.1MPa and for 3.6ks. The electrodes were 
connected to a power source, and the CFRP layer was heated by electric resistance heating.    
 
Curvature of the laminate r–1 decreased when it was heated and r–1 became zero when it reached its hot-pressing 
temperature as shown in Figure 15. Shapes of the CFRP/Al active laminate at room and hot-pressing temperatures are 
given in Figure 16. It could perform unidirectional actuation.                 
 
The fiber-optic sensor shown in Figure 3 was multiply made in the CFRP layer to enhance total optical loss when the 
active laminate is actuated [10]. This type of laminate was made as shown in Figure 17. Schematic diagram of the 
curvature and optical loss measurement set-up is shown in Figure 18. The laminate was put on a block and its embedded 
optical fiber was connected to a laser diode light source of 0.67x10-3mm wavelength and to a power meter. The optical  
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loss variation was monitored during the curvature change of the laminate. In Figure 19, the effect of fracture number n of 
the embedded optical fiber on the relation between curvature r-1 and optical transmission loss L of the laminate is shown.  
According to this figure, the L as a function of r-1 is clearly increased by the increase in number n from 1 to 10. So the 
multiple fracture of the embedded optical fiber at its notches is effective to form a sensitive sensor for curvature 
monitoring of the laminate and will be useful for its shape control. 
  
Conclusions 
 
New concepts the author has proposed and demonstrated to realize metal and polymer based sensitive and/or active 
structural material systems suitable for health monitoring and/or active shape control are introduced in this paper. Most 
of the developments have been done by simple and innovative methods without using sophisticated and expensive 
sensors and actuators. The following topics were mainly examined.  
 
(1) Formation of optical interference and loss type strain sensors in epoxy matrix and CFRP simply by embedding 
notched optical fiber and fracture of it in them. This type of sensor is simple, compact, robust and low cost. In the case of 
single notched optical fiber, an optical interference type sensor to detect small and precise strain was easily formed. In 
the case of multiply notched one, an optical loss type sensor for measurement of large strain was easily obtained.  
(2) Fabrication of a multifunctional sensor for aluminum and its composite to monitor their temperatures, strains, fracture 
processes, and so on. It was successfully made by embedding an oxidized nickel fiber (NiO/Ni composite fiber) in them. 
A part of the oxide was removed before embedment to make a metallic contact between the nickel fiber and aluminum 
matrix to generate thermal electromotive force for temperature measurement. Strain was reflected on electrical resistance 
change of the embedded fiber. This type of sensor is also very simple and low cost.   
(3) Development of active and sensitive composites for active shape control, and so on, using conventional structural 
materials as follows: An active laminate of CFRP (works as "bone" and "blood vessel") / epoxy (as insulator) / aluminum 
(as "muscle") / electrode (to apply voltage on CFRP), of which unidirectional actuation was realized by electrical 
resistance heating of carbon fiber in the CFRP layer and its curvature change could be monitored using optical fiber 
multiply fractured in the CFRP layer (works as "nerve").  
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